89 research outputs found

    Altered interoceptive processing in smokers: Evidence from the heartbeat tracking task

    Get PDF
    Neuroimaging evidence suggests that interoceptive processing might be altered in nicotine addiction, however this has not yet been confirmed with behavioral measures. Therefore, we investigated the perception of internal bodily states in smokers (n=49) and people who had never smoked (n=51), by measuring interoceptive accuracy (IAcc) and interoceptive sensibility (IS). IAcc was measured with a heartbeat tracking task and a heartbeat discrimination task. Performance on the heartbeat tracking task may be influenced by one's ability to estimate an elapsed time interval so this was controlled by also administering a time-estimation (TE) task. IS was measured using two sub-scales from the Multidimensional Assessment of Interoceptive Awareness (MAIA). All smokers completed the Revised Fagerström Test for Nicotine Dependence (FTND-R) to measure addiction severity. Non-smokers performed significantly better than smokers on the heartbeat tracking task. There were no significant group differences observed for the remaining variables. Furthermore, none of the variables predicted addiction severity. This is the first demonstration of behavioural differences in interoception between smokers and non-smokers

    Differential human brain activation by vertical and horizontal global visual textures

    Get PDF
    Mid-level visual processes which integrate local orientation information for the detection of global structure can be investigated using global form stimuli of varying complexity. Several lines of evidence suggest that the identification of concentric and parallel organisations relies on different underlying neural substrates. The current study measured brain activation by concentric, horizontal parallel, and vertical parallel arrays of short line segments, compared to arrays of randomly oriented segments. Six subjects were scanned in a blocked design functional magnetic resonance imaging experiment. We compared percentage BOLD signal change during the concentric, horizontal and vertical blocks within early retinotopic areas, the fusiform face area and the lateral occipital complex. Unexpectedly, we found that vertical and horizontal parallel forms differentially activated visual cortical areas beyond V1, but in general, activations to concentric and parallel forms did not differ. Vertical patterns produced the highest percentage signal change overall and only area V3A showed a significant difference between concentric and parallel (horizontal) stimuli, with the former better activating this area. These data suggest that the difference in brain activation to vertical and horizontal forms arises at intermediate or global levels of visual representation since the differential activity was found in mid-level retinotopic areas V2 and V3 but not in V1. This may explain why earlier studies—using methods that emphasised responses to local orientation—did not discover this vertical-horizontal anisotrop

    Mindfulness, Interoception, and the Body

    Get PDF
    Description to be added.Cannot be left empt

    Brain technologies raise unprecedented ethical challenges

    Get PDF

    Editorial: Psychology and Neuropsychology of Perception, Action, and Cognition

    Get PDF
    Description to be added.Cannot be left empt

    Turning body and self inside out: visualized heartbeats alter bodily self-consciousness and tactile perception

    Get PDF
    Prominent theories highlight the importance of bodily perception for self-consciousness, but it is currently not known whether bodily perception is based on interoceptive or exteroceptive signals or on integrated signals from these anatomically distinct systems. In the research reported here, we combined both types of signals by surreptitiously providing participants with visual exteroceptive information about their heartbeat: A real-time video image of a periodically illuminated silhouette outlined participants' (projected, "virtual") bodies and flashed in synchrony with their heartbeats. We investigated whether these "cardio-visual" signals could modulate bodily self-consciousness and tactile perception. We report two main findings. First, synchronous cardio-visual signals increased self-identification with and self-location toward the virtual body, and second, they altered the perception of tactile stimuli applied to participants' backs so that touch was mislocalized toward the virtual body. We argue that the integration of signals from the inside and the outside of the human body is a fundamental neurobiological process underlying self-consciousness

    Leg muscle vibration modulates bodily self-consciousness: integration of proprioceptive, visual, and tactile signals

    Get PDF
    Behavioral studies have used visuo-tactile conflicts between a participant's body and a visually presented fake or virtual body to investigate the importance of bodily perception for self-consciousness (bodily self-consciousness). Illusory self-identification with a fake body and changes in tactile processing--modulation of visuo-tactile cross-modal congruency effects (CCEs)--were reported in previous findings. Although proprioceptive signals are deemed important for bodily self-consciousness, their contribution to the representation of the full body has not been studied. Here we investigated whether and how self-identification and tactile processing (CCE magnitude) could be modified by altering proprioceptive signals with 80-Hz vibrations at the legs. Participants made elevation judgments of tactile cues (while ignoring nearby lights) during synchronous and asynchronous stroking of a seen fake body. We found that proprioceptive signals during vibrations altered the magnitude of self-identification and mislocalization of touch (CCE) in a synchrony-dependent fashion: we observed an increase of self-identification and CCE magnitude during asynchronous stroking. In a second control experiment we studied whether proprioceptive signals per se, or those from the lower limbs in particular, were essential for these changes. We applied vibrations at the upper limbs (which provide no information about the position of the participant's body in space) and in this case observed no modulation of bodily self-consciousness or tactile perception. These data link proprioceptive signals from the legs that are conveyed through the dorsal column-medial lemniscal pathway to bodily self-consciousness. We discuss their integration with bodily signals from vision and touch for full-body representations

    Enlarged representation of peripersonal space in pregnancy.

    Get PDF
    Our ability to maintain a coherent bodily self despite continuous changes within and outside our body relies on the highly flexible multisensory representation of the body, and of the space surrounding it: the peripersonal space (PPS). The aim of our study was to investigate whether during pregnancy - when extremely rapid changes in body size and shape occur - a likewise rapid plastic reorganization of the neural representation of the PPS occurs. We used an audio-tactile integration task to measure the PPS boundary at different stages of pregnancy. We found that in the second trimester of pregnancy and postpartum women did not show differences in their PPS size as compared to the control group (non-pregnant women). However, in the third trimester the PPS was larger than the controls' PPS and the shift between representation of near and far space was more gradual. We therefore conclude that during pregnancy the brain adapts to the sudden bodily changes, by expanding the representation of the space around the body. This may represent a mechanism to protect the vulnerable abdomen from injury from surrounding objects

    Force feedback facilitates multisensory integration during robotic tool use

    Get PDF
    The present study investigated the effects of force feedback in relation to tool use on the multisensory integration of visuo-tactile information. Participants learned to control a robotic tool through a surgical robotic interface. Following tool-use training, participants performed a crossmodal congruency task, by responding to tactile vibrations applied to their hands, while ignoring visual distractors superimposed on the robotic tools. In the first experiment it was found that tool-use training with force feedback facilitates multisensory integration of signals from the tool, as reflected in a stronger crossmodal congruency effect with the force feedback training compared to training without force feedback and to no training. The second experiment extends these findings by showing that training with realistic online force feedback resulted in a stronger crossmodal congruency effect compared to training in which force feedback was delayed. The present study highlights the importance of haptic information for multisensory integration and extends findings from classical tool-use studies to the domain of robotic tools. We argue that such crossmodal congruency effects are an objective measure of robotic tool integration and propose some potential applications in surgical robotics, robotic tools, and human-tool interactio
    corecore